
The Basics of Coding

Every statement (usually a statement is a line of code) must finish with a semicolon ; - if this is missed, the compiler
will complain about the next line, not the offending one.

Code within a pair of braces is often called a block.

All parentheses () braces {} and double or single quotes “” ‘’ must be paired. Not closing any of these
confuses the compiler.

All parentheses () braces {} and double or single quotes “” ‘’ must be nested.

if (y > 0){

if (x > 2){

//some code statements here

} //this is the end of the second if, which is completely nested inside the first if's braces

} //this is the end of the first if

(“ my text “) not (“my text)” the former is nested, with quotes inside parentheses, the latter is not

// the double slash precedes a comment – a note to the programmer/reader ignored by the compiler

the preceding code on the line is not part of the comment // the comment only lasts until the end of that line

/* this is a block comment
that might go on
for more than one line
*/

Turning on line numbering, if that is an available option, helps with locating compiler problems.

Having an environment which automatically indents code is a big advantage. Code should be
indented according to bracing level, as is the if example shown above. It is then easy for the eye to
find the beginning and end of a block.

Commenting the end brace of a block with a description of what it is ending can be very helpful for
choosing where to insert other code later on. When confronted with a series of end-braces like this:

}
}

}
}
it is very easy to pick the wrong one. Better:

} //end inner if
} //end outer if

} //end loop
} //end function

Storing	
 data
Variables are names referring to stored pieces of data. The value of the data may be changed while
the name remains the same.
A variable is generally of a particular data type. The common ones for beginner programmers are

 int integer
double / float real numbers
char / character individual character e.g. a 3 #) etc.
String / string a series of characters, usually enclosed in double quotes ””
boolean / bool true or false value

The first time you use a variable you need to declare it – specify what type of data it will hold.
Behind the scenes, this reserves the right amount of memory space for storing it.
int x;
String mySentence;

Declaring a number (int or double) variable generally gives it a default value of 0.

Assignment	

Variables get their values by assignment. The equals symbol = is used for assignment. In
programming, do not think of equals as “is equal to”, but rather “gets the value of”.
int x = 3; declares a variable called x and set its value to 3.
x = 5; x gets the value 5
x = x + 3; x gets the value of what x held to start with (5, if these statements were performed in order) plus 3

Division happens with the / sign (operator).
x = x / 2;

Integer division loses the remainder completely.
x = 7 / 2; // would give x the value 3

If you want to keep the remainder, use the mod % operator.

y = 7 % 2; // would give y the value 1

Multiplication uses the * symbol

Expressions
An expression is any piece of program code which, when its execution terminates, returns a value.
In most programming languages, expressions consist of constants, variables, operators, functions,
and parentheses. The operators and functions may be built-in or user defined.

(from http://dictionary.reference.com/browse/expression)

(3 + 2) * 5 / 2 // is an expression
int x = (3 + 2) * 5 / 2; // is a statement

In many languages, mathematical statements can be shortened.
x = x + 1 can be shortened to x += 1
y = y / 4 can be shortened to y /= 4

Sequence,	
 selection	
 and	
 iteration

Sequence
Statements in a block are performed in order (sequence).

Often, you will have statements that should only be performed sometimes, if a condition or
conditions are right. Choosing the condition is known as selection, and is commonly done with if
and if else statements. Sometimes you will have statements that you want to be performed
repeatedly for a known number of times, or until a condition is met. Loops are generally used for
repetition; each repetition is called an iteration. There are several different kinds of loop which may
be used, and choosing the best one is a bit of an art.

Selection

if

An if statement is performed when its condition is true. A condition is any legally formed
expression which may be either true or false

if (condition){
//do something if the condition is true

}

Constructing	
 a	
 condition:	

Assuming score is a variable of type int:
A condition might be
(score < 5) score is less than 5
(score >= 5) score is greater than or equal to 5
(score == 5) score is equal to 5
(score != 5) score is not equal to 5
(score > 5 && score < 50) score is less than 5 and greater than 50
(score < 0 || score > 100) score is less than 0 or score is greater than 100
else
if else if (condition){

//do something if the condition is true
} else {

//do something else if the condition is not true
}

if else if if (condition1){
//do something if condition1 is true

} else if (condition2){
//do something else if condition2 is true and condition1 is not true

} else {
//do something if neither condition1 nor condition2 is true

}

nested if if (condition1){
//do something if the condition1 is true

 if (condition2){
//do something more if condition 2 is true and condition1 is true

}
} else {

//do something if condition1 is not true. condition2 is irrelevant
}

Iteration

The most common forms of loop are do..while, while and for:
do{

//statements to be repeated go here

}while(condition); //the condition is checked after the loop, so the loop is
// performed at least once

while(condition){ //the condition is checked before the loop, so the loop may not be
// performed at all

//statements to be repeated go here

}

for (start condition; stop condition; increment){

//statements to be repeated go here
}

examples	
 of	
 each:

do
int sum = 0; //sum is required outside the loop block, so declared outside
int increment = 10;
do{

sum = sum + increment;
}while(sum < 1000);

while
int doubled = 1; //doubled is required outside the loop block, so declared outside
while(doubled < 1000){

doubled *= 2;
}

for
int sum = 0; //must be declared outside the block or would start

// again from 0 with each iteration
int increment = 10;
for (int count = 0; count < 50; count++){

sum += increment;
}

Common problems –
putting a semicolon after the condition
not ensuring the loop will always finish sometime.
Declaring loop finishing data or other accumulating variables inside the loop block.

Functions	
 /	
 methods	
 /	
 subroutines	
 /	
 modules
A series of statements which performs a particular purpose can be put in a block. This block of code
can be given a name. The block should not be nested inside any other block of code. Some
languages ask that they come first, before the main task / method / function.
This enables the block of code to be used repeatedly without being rewritten. All you need to do is
call its name whenever you want it.

If a function / method is void, the code within it is performed (run executed) when the function is
called (has its name mentioned in a statement).

//this is a function
void myFunction(){

//code statement/s in here
}

example of function call

if(score > 50){
myFunction(); //all the statements within myFunction will be performed before any other statement
//other statements here

}

Sending	
 data	
 to	
 a	
 function
Where the function is declared, inside the parentheses might be a list of the data type and name for
the incoming data.

void function_1(int a, int b){ //a and b are incoming data
int c = a + b;

}
void function_2(string s){

//code statements here might print s, or count the number of spaces in it, or check that it isn't too short . . .
}

and to call the function:
e.g.

function_1 (3, 4);
function_1(102, 3015);

int x = 30;
function_1 (x, 3 * x));

function_2(“a sentence on the move”);

The list of data with its type specified in the function itself is called a parameter list. The function
can not be called without all of these items being sent to it, so the call to the function must match
the parameter list with the appropriate number and type of data.

For the functions declared above:
function_1 expects to be sent 2 integers, so any call to it must have 2 integers.
function_2 expects to be sent 1 string, so any call to it must have 1 string.
myFunction expects to be sent nothing, so any call to it must have empty parentheses.

Getting	
 data	
 from	
 a	
 function
A function may return a value (just one value). In this case, the type of the value returned must be
specified instead of the word void. The last statement in a return method should be a return
statement which returns a piece of data of the type specified.

int myFunction(){
int x = 2 + 2 ;
return x;

}

OR, doing the same job:

int myFunction(){
return 2 + 2;

}

When calling a return method, think of the value being returned replacing the call to the function in
the code.
When calling a return method don't use

myFunction(); // as that will have no effect

but instead use

x = myFunction(); // as this will store the value returned by myFunction in the variable x

or

if(myFunction() > 5) {
//which will calculate the result of myFunction where it is needed for the condition,
//but does not store the result

Many languages have libraries of predefined functions which can be used.

Scope

In most modern languages, where a variable is declared defines where it can be used. If it is
declared inside a block of code it will not be able to be used outside of that block. If it is declared
outside of any block, customarily at the top of the program, it is available throughout the whole
program.

int a;
codeblock3{ //note codeblock is a function header or an if or loop

int z;
codeblock1{

int x;
}
codeblock2{

int y;
}

}
codeblock4{

}

The variable z can be used in codeblock1, codeblock2 and codeblock3.
The variable x can be used just in codeblock1.
The variable y can be used just in codeblock2.
The variable a can be used in codeblock1, codeblock2, codeblock3 and codeblock4.

Common error: If you declare a variable twice (use the same name in different places), you need to be careful to do it
for the right reasons. The code below compiles, but may not give the programmer the right answer.

int z; // this z will be set to the default value of 0
codeblock3{

int z = 3; // this z is only available between the braces
// here, any access to z will find the closest z, and return 3.

}
// here, any access to z will return 0

FIXED:
int z; // this z will be set to the default value of 0
codeblock3{

z = 3; // this sets a new value for z
// here, any access to z will find the closest z, and return 3.

}
// here, any access to z will return 3

There are times when it is OK to use the same name for 2 variables e.g. if two functions both
require a counter of some sort, but the counter is completely contained within the function.

codeblock1{
int count; //e.g. to count the number of times the user has played a game
do{ //in a loop

playGame();
count++; // the count is not needed outside of the block

while (count < 5) //repeat until count reaches some number
}
codeblock2{

int count; //e.g. counts the number of items read from a data source in order to
//calculate an average – the average may be required outside of the block,
// but the count isn't

}

Arrays

It is common for a series of related data to be stored together. It can then be processed together by a
loop. An array is an example of a data structure, and there are others.

An array is a series of data of the same data type.

An array needs to be declared with a special syntax e.g. int myArray[];

The individual pieces of data in an array are called elements. The elements have a position number,
or index. The data starts at index number 0. There is always some way of retrieving the length of the
array e.g. ArrayLen(myArray)
myArray

index 0 1 2 3 4 5 6 7 8 9

element stored 6 3 8 10 9 3 3 7 3 1

To set the value of 1 array element, use its index in square brackets.

myArray[3] = 9; // stores the number 9 in myArray index position 3 (will overwrite 10)

myArray[0] = 1; // changes the first element of the array from 6 to 1

To get an elements value out of the array, once again use its index in square brackets:

int value1 = myArray[2];

if (myArray[0] < 5){

Looping	
 through	
 an	
 array
The power of data structures lies in the ability to loop through them sequentially.

for (int i = 0; i < ArrayLen(myArray); i++){

myArray[i] += 10; //adds 10 to every element of the array, and stores it
}

